This will write out the entire contents of the DataStream to a list of Parquets.
Parameters:
Name |
Type |
Description |
Default |
table_location |
str
|
the root directory to write the output Parquets to. Similar to Spark, Quokka by default
writes out a directory of Parquets instead of dumping all the results to a single Parquet so the output can be
done in parallel. If your dataset is small and you want a single file, you can adjust the output_line_limit
parameter. Example table_locations: s3://bucket/prefix for cloud, absolute path /home/user/files for disk. |
required
|
output_line_limit |
int
|
the row group size in each output file. |
5000000
|
Return
DataStream containing the filenames of the Parquets that were produced.
Examples:
>>> f = qc.read_csv("lineitem.csv")
>>> f = f.filter("l_orderkey < 10 and l_partkey > 5")
>>> f.write_parquet("/home/user/test-out")
You should create the directory before hand! This will write out a list of Parquets to /home/user/test-out.
Source code in pyquokka/datastream.py
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276 | def write_parquet(self, table_location, output_line_limit=5000000):
"""
This will write out the entire contents of the DataStream to a list of Parquets.
Args:
table_location (str): the root directory to write the output Parquets to. Similar to Spark, Quokka by default
writes out a directory of Parquets instead of dumping all the results to a single Parquet so the output can be
done in parallel. If your dataset is small and you want a single file, you can adjust the output_line_limit
parameter. Example table_locations: s3://bucket/prefix for cloud, absolute path /home/user/files for disk.
output_line_limit (int): the row group size in each output file.
Return:
DataStream containing the filenames of the Parquets that were produced.
Examples:
>>> f = qc.read_csv("lineitem.csv")
>>> f = f.filter("l_orderkey < 10 and l_partkey > 5")
>>> f.write_parquet("/home/user/test-out")
You should create the directory before hand! This will write out a list of Parquets to /home/user/test-out.
"""
if self.materialized:
df = self._get_materialized_df()
df.write_parquet(table_location)
return
if table_location[:5] == "s3://":
if type(self.quokka_context.cluster) == LocalCluster:
print(
"Warning: trying to write S3 dataset on local machine. This assumes high network bandwidth.")
table_location = table_location[5:]
bucket = table_location.split("/")[0]
try:
client = boto3.client("s3")
region = client.get_bucket_location(Bucket=bucket)["LocationConstraint"]
except:
raise Exception("Bucket does not exist.")
executor = OutputExecutor(
table_location, "parquet", region=region, row_group_size=output_line_limit)
else:
if type(self.quokka_context.cluster) == EC2Cluster:
raise NotImplementedError(
"Does not support writing local dataset with S3 cluster. Must use S3 bucket.")
assert table_location[0] == "/", "You must supply absolute path to directory."
executor = OutputExecutor(
table_location, "parquet", region="local", row_group_size=output_line_limit)
name_stream = self.quokka_context.new_stream(
sources={0: self},
partitioners={0: PassThroughPartitioner()},
node=StatefulNode(
schema=["filename"],
# this is a stateful node, but predicates and projections can be pushed down.
schema_mapping={"filename": {-1: "filename"}},
required_columns={0: set(self.schema)},
operator=executor
),
schema=["filename"],
)
return name_stream
|